Evaluation of Dry Sorbent Technology for Pre-Combustion CO₂ Capture

(FE-0000465)

Bill Steen URS Group

2011 DOE/NETL CO₂ Capture Technology Meeting Pittsburgh, PA • August 25, 2011

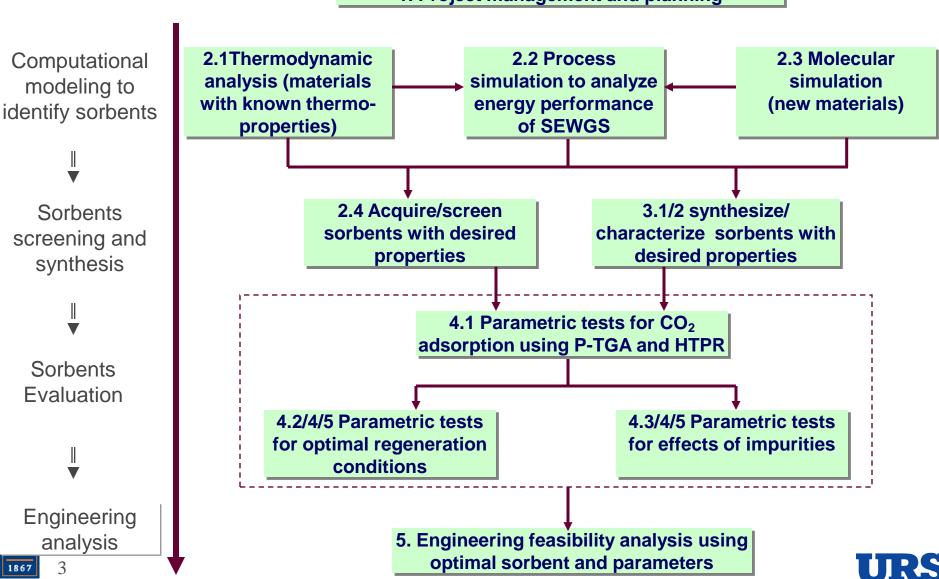
Project Objectives and Scope of Work

Objective

 Identify, develop, and optimize engineered sorbents for a process that combines CO₂ capture with the water gas-shift (WGS) reaction

Scope of Work

- Thermodynamic, molecular, and process simulation modeling to identify/predict optimal sorbent properties and process operating conditions
- Synthesis and characterization of sorbents
- Experimental evaluation of sorbents for CO₂ adsorption and regeneration



Techno-economic analysis

Research Tasks

1. Project management and planning

Project Team

DOE-NETL: Meghan Napoli (COR)

ICCI: Joseph Hirsch (ICCI manager)

UIUC: Computation, sorbent synthesis/ screening

Hong Lu Research Chemical Engineer

Yongqi Lu Research Chemical Engineer

Massoud Rostam-Abadi Principal Chemical Engineer

Ken Suslick Professor, Chemistry

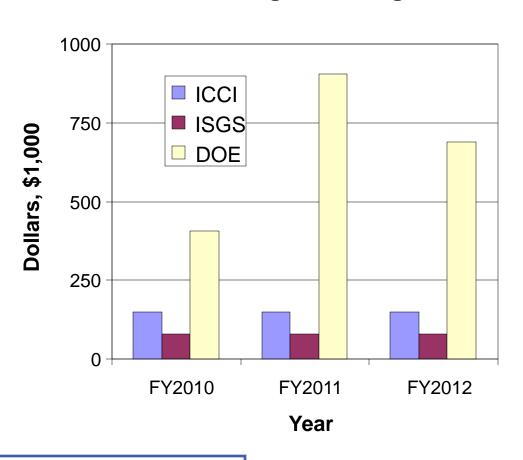
URS Group: Prime Contractor; sorbent evaluation testing

Carl Richardson Project Manager

William Steen Testing Manager

Jennifer Paradis Laboratory Director

Project Funding

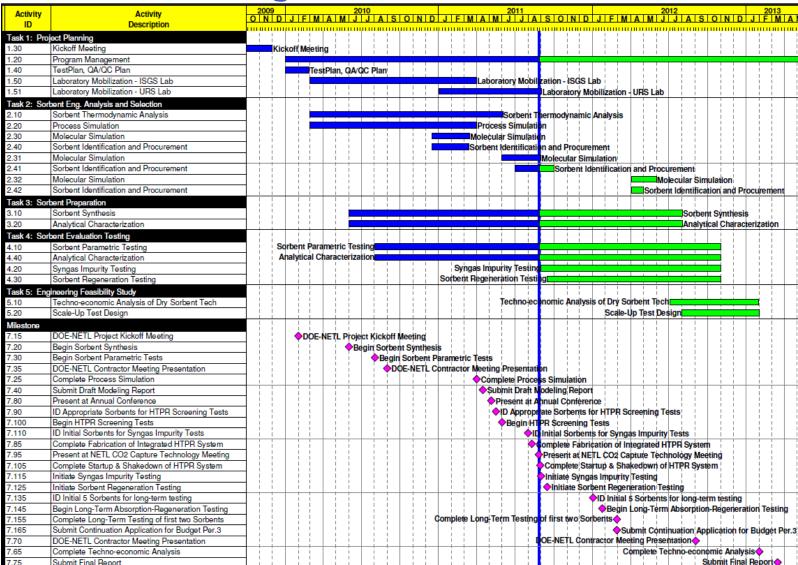

Where The Funding is Coming From

FY10: \$ 633,669

FY11: \$1,134,602

FY12: \$ 916,123

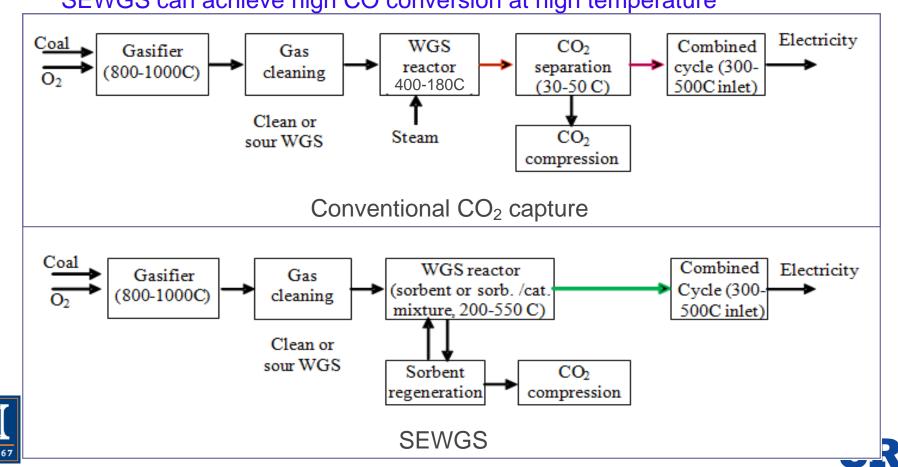
Total: \$2,684,394



Cost Share is 25%

Project Schedule

Technology Fundamentals/Background



IGCC + SEWGS vs. Conventional IGCC

$$CO + H_2O = CO_2 + H_2$$

Exothermic reaction

Kinetically limited at low temperatures, multiple stages / temperatures required SEWGS can achieve high CO conversion at high temperature

IGCC-SEWGS Advantages

- High CO conversion with reduced steam addition
- No or limited WGS catalyst use
- High quality heat usable for generating high quality steam
- No gas cooling/reheating requirement downstream
- No separate CO₂ capture unit required

Progress and Current Status

Task 2.1 Thermodynamic Analysis: Sorbent Screening

- Thermodynamic analysis completed
 - FactSage 6.1 software used
 - 40 sorbents screened
 - 7 candidate sorbents identified (for process simulation and material synthesis studies)

Initial screening thermoanalysis (40 sorbents)

```
Adsorption at 200-600 °C in:

(1) sorb+CO<sub>2</sub>;

(2) sorb+CO<sub>2</sub>+H<sub>2</sub>O;

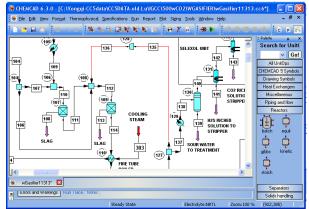
(3) sorb +CO<sub>2</sub> +H<sub>2</sub>O+CO+H<sub>2</sub>?
```

CO₂ adsorption/desorption equlibria (18 sorbents)

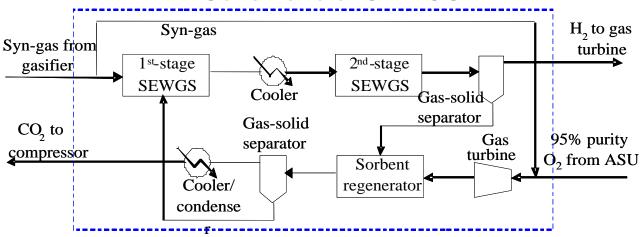
Decomposition pressure at 900 °C and ≥ 1 bar?

CO conversion under equilibrium (12 sorbents)

High CO conversion (>98%)


at >400 °C ? (kinetics favored at high T)

2 MeO (Mg, Ca), 3 zirconates (Li, Ca, Ba); 1 silicate (Ba); 1 titanate (Ba)__



Task 2.2: Process Simulation of IGCC with SEWGS

- Mass and energy balance calculation using CHEMCAD (v6.3.0)
 - IGCC + conventional WGS + Selexol
 - IGCC + SEWGS with selected sorbents

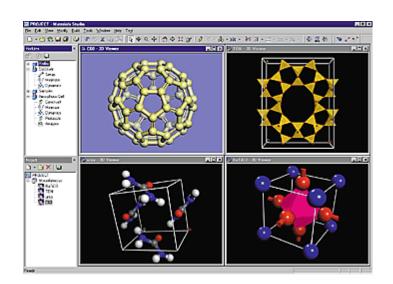
Schematic of SEWGS

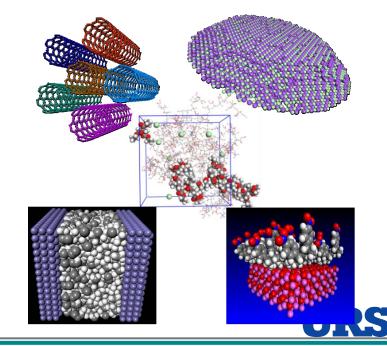
- Adsorption heat recovered for steam generation
- Other heat integration efficiencies

IGCC + SEWGS for CO₂ Capture

- Sorbents modeled: CaO, MgO, Li₂ZrO₃, CaZrO₃, BaZrO₃, BaSiO₃, and BaTiO₃
- IGCC+SEWGS (not optimized yet)
 - CO conversion: >98%
 - Overall carbon removal: >97%
- ~1-3% increase in net generation efficiency over base case (WGS w/ Selexol)
 - Caveat: Modeling a process w/o a great deal of data
 - Li₂ZrO₃ most efficient

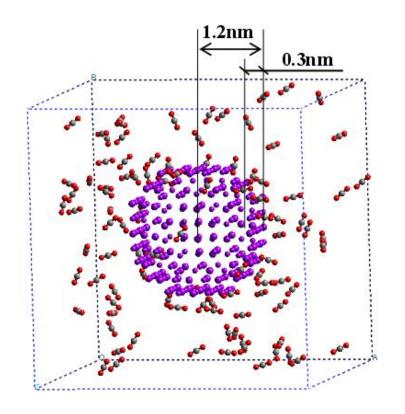
Demonstrates Theoretical Process Feasibility

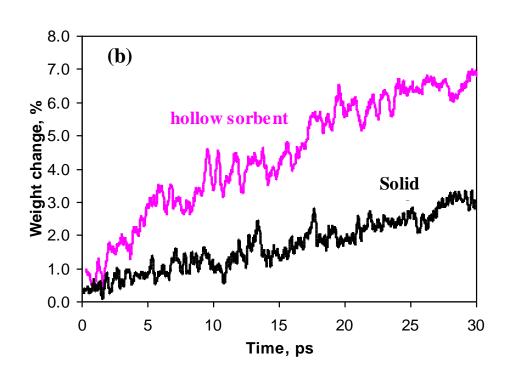




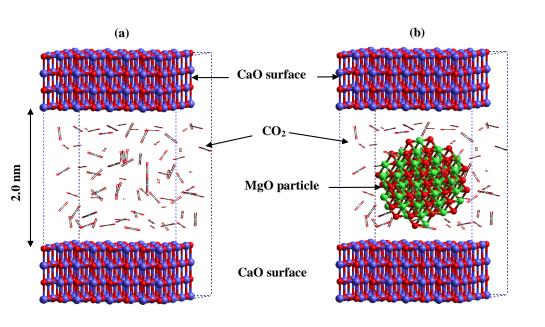
Task 2.3: Molecular Simulation

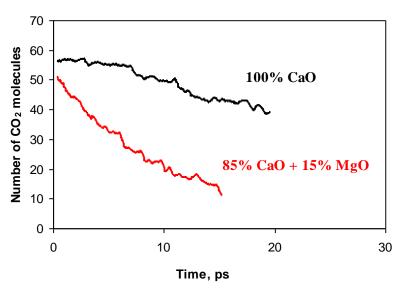
- Ab initio quantum chemical (QC) calculation using Material Studio software package
 - Adsorption energies of CO₂ on sorbent surfaces
 - Optimal packing structures


- Molecular Dynamics (MD) with reactive force field (ReaxFF)
 - Chemisorption on CO₂ on sorbent surfaces



Impact of Sorbent Structure on CO₂ Adsorption

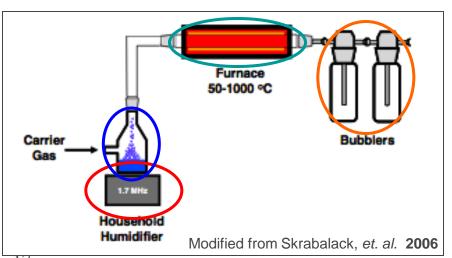


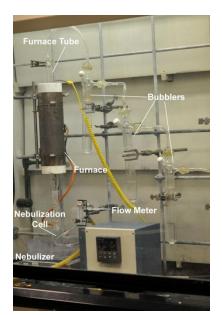

Hollow structured CaO particle showed more CO₂ adsorption per unit mass of sorbent

Role of Dopant (MgO) in CaO Carbonation

CO₂ molecules in a nanopore formed by two CaO (100) surfaces with and w/o MgO

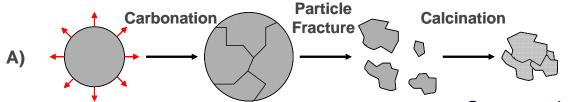
Total number of free CO₂ molecules in a nanopore in NVE-MD simulation starting at 1200K

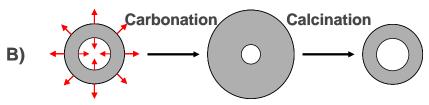

MgO dopant improved reactivity of CaO

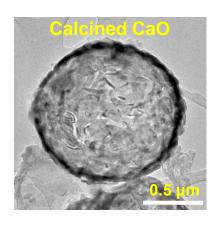


Task 3. Sorbent Synthesis and Characterization: (1) Ultrasonic Spray Pyrolysis (USP) Approach

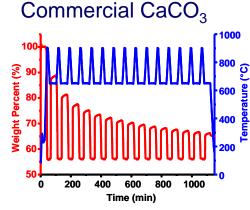
- Dissolve sorbent precursor in solvents or water
- Precursor solution nebulized using high frequency ultrasound
- Carrier gas transports aerosol through the furnace
 - solvent evaporates
 - precursor decomposes to the product
- Product collected in bubblers and then isolated
- Easily scaled up

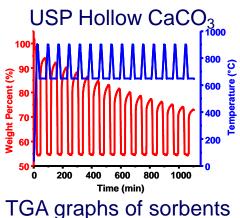

- Aerosol Generation
- Mixing Chamber
- Reaction Tube
- Carbon Collection





USP CaCO₃ Sorbent Products

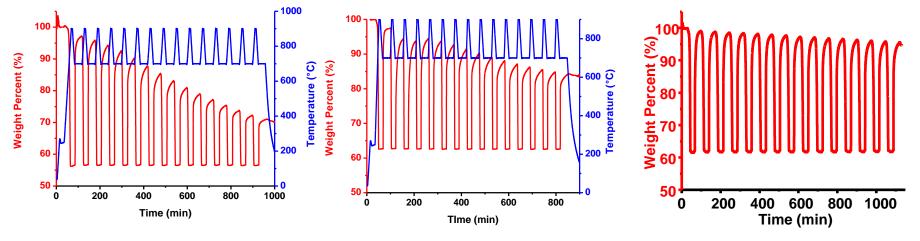



Predominately hollow spheres

 Permit expansion and reduce sintering and pore plugging

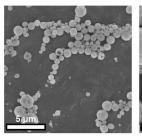
High BET surface area (m²/g)

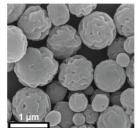
 40-75 (>> 9-36 for precipitated CaCO₃-CaO and 1-3 for commercial lime in literature)



in 15 cycles

Precursor: Ca(NO₃)2•4H₂O
Conc: 0.25 M
Temperature: 600 °C
Bubblers: EtOH
Carrier Gas: Ar
Flow Rate: SLPM


Doped USP Sorbents

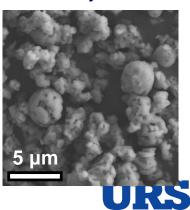


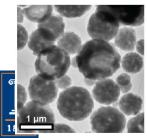
USP pure CaCO₃

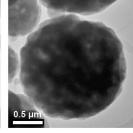
75:25 wt% CaO:MgO

75:25 wt% CaO:Ca₁₂Al₁₄O₃₃

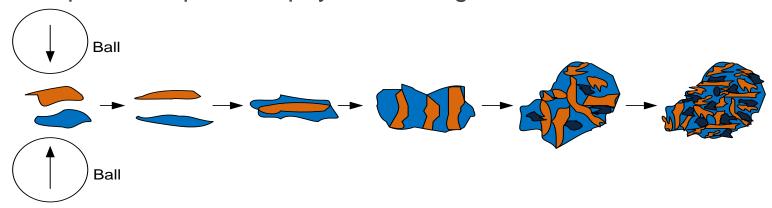



Mg-doped sorbent retained ~58% capacity over 15 cycles




Fresh sorbent

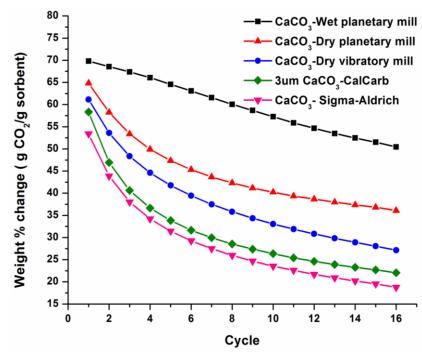
After 15 cycles



Task 3. Sorbent Synthesis and Characterization: (2) Mechanical Alloying (MA) Approach

- Mix multiple sorbent components at an atomic level
 - Microstructure
 - Properties tuned by controlling composition
 - Size cutting to nano-scale
 - Narrow particle size distribution and uniform composition
 - Properties superior to physical mixing

- Mechanism of mechanical alloying
 - Particles subjected to high energetic impact forces
 - Particles flattened, fractured, and welded
 - Composite particles with layered structure formed

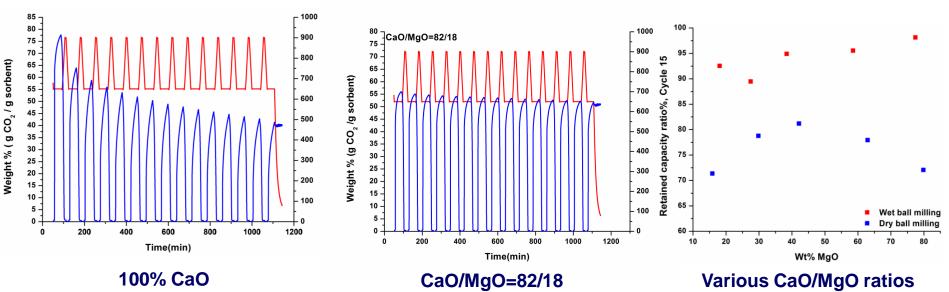

Cyclic Performance of CaCO₃ Sorbents with Different Origins

Two mills used:

- □ Vibratory ball mill (SPEX 8000M)
 - Dry milling
- Planetary ball mill (Pulverisette 7)
 - Dry milling
 - Wet milling using ethanol medium

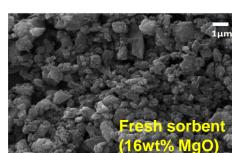
BET surface (m²/g)

Wet planetary milled Sigma CaCO ₃	17.24	
Dry planetary milled Sigma CaCO ₃	4.99	
Dry vibratory milled Sigma CaCO ₃	4.09	
As-received Mississippi Lime CalCarb CaCO ₃	0.25	
As-received Sigma CaCO ₃	0.01	

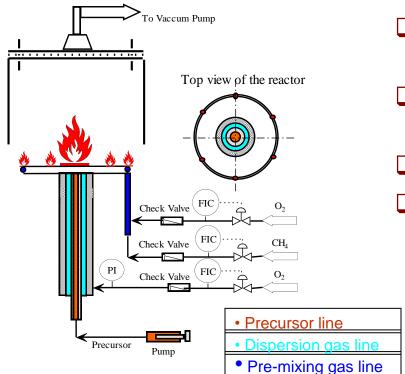

(16 cycles; each cycle: carbonation for 30 min at 650 C under CO₂ and calcination for 5 min at 900 C under N₂)

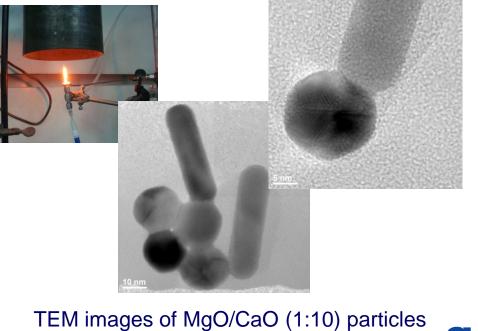
- Wet milled CaCO₃ (17.2 m²/g) displayed the best CO₂ capacity
- □ Capacity decreased over time

^{*} Samples milled for 2 hr


Wet Planetary-Ball-Milled MgO-Doped CaO Sorbents

Capacity retention (wt%) after 15 cycles:


- ☐ CaO sorbent: 53.4%
- ☐ CaO/MgO (82:18) sorbent: 92.5%
- ☐ All wet milled CaO/MgO sorbents: >89%



Task 3. Sorbent Synthesis and Characterization: (3) Flame Spray Pyrolysis (FSP) Approach

- Precursor solution dispersed using high speed gas
- □ Dispersed precursor droplets burned in flame
- Nano-sized particles formed in flame
- Product collected in vacuum filter

	Expected FSP product	BET, m²/g	BET based diameter, nm
	CaO	54	33
	ZrO2/CaO (1:10)	43	40
·	ZrO2/CaO (1:1)	21	71
18	MgO/CaO (1:10)	28	64
11	,	<u> </u>	

Task 3 & 4. Sorbent Evaluation and Screening


High temperature & pressure reactor (HTPR) @ UIUC

- Double shell reactor
- 300 psig at 950 °C
- Modified and re-certificated
- Shake-down tests performed

System at URS for impurity testing (H₂S, CO, HCI)

- Automated for long term regen testing
- Autoclave Engineers reactor
- Currently being installed

Two TGA systems at UIUC: high pressure (1000 psig at 1000 °C) and atmospheric TGA

Summary

Modeling Efforts

- Preliminary thermodynamic modeling completed
- Process simulation analyses performed for seven candidate sorbents identified from thermodynamic analysis; identified process conditions for increased efficiency
- Molecular simulation studies successfully predicted carbonation / calcination reactions, role of dopant, and impacts of sorbent structure
- Sorbent synthesis using USP, MA, and FSP approaches
 - USP approach: ~10 USP sorbents synthesized, some with hollow structure and high BET surface (40-75 m²/g) Ca-based sorbents
 - MA approach: ~20 MA sorbents synthesized, energy consumption for large scale production of MA sorbents not currently known
 - FSP approach: ~10 FSP sorbents synthesized, nano-size and high BET surface area (20-50 m²/g) sorbents
- HTPR, PTGA and ATGA
 - Sorbent evaluation in progress
 - HTPR installation and shakedown ongoing at both UIUC and URS

Plans for Future Work

- HTPR Testing
 - Main focus, feed-back to sorbent synthesis
 - Impurity testing
 - Long term regenerability
- Continued simulation, sorbent synthesis, and analytical characterization
 - Molecular, process, and thermodynamic
 - USP, MA, and FSP
- Techno-economic study
 - Scale-up design

Acknowledgments

- U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL), through Cooperative Agreement No. DE-FE-0000465
- Illinois Department of Commerce and Economic Opportunity (IDCEO), through the Office of Coal Development (OCD) and the Illinois Clean Coal Institute (ICCI) under Contract No. 10/US-2

